Learning Document Representations Using Subspace Multinomial Model
نویسندگان
چکیده
Subspace multinomial model (SMM) is a log-linear model and can be used for learning low dimensional continuous representation for discrete data. SMM and its variants have been used for speaker verification based on prosodic features and phonotactic language recognition. In this paper, we propose a new variant of SMM that introduces sparsity and call the resulting model as `1 SMM. We show that `1 SMM can be used for learning document representations that are helpful in topic identification or classification and clustering tasks. Our experiments in document classification show that SMM achieves comparable results to models such as latent Dirichlet allocation and sparse topical coding, while having a useful property that the resulting document vectors are Gaussian distributed.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملLearning Latent Word Representations for Domain Adaptation using Supervised Word Clustering
Domain adaptation has been popularly studied on exploiting labeled information from a source domain to learn a prediction model in a target domain. In this paper, we develop a novel representation learning approach to address domain adaptation for text classification with automatically induced discriminative latent features, which are generalizable across domains while informative to the predic...
متن کاملDeep Dirichlet Multinomial Regression
Dirichlet Multinomial Regression (DMR) and other supervised topic models can incorporate arbitrary document-level features to inform topic priors. However, their ability to model corpora are limited by the representation and selection of these features – a choice the topic modeler must make. Instead, we seek models that can learn the feature representations upon which to condition topic selecti...
متن کاملEfficient Optimization for Discriminative Latent Class Models
Dimensionality reduction is commonly used in the setting of multi-label supervised classification to control the learning capacity and to provide a meaningful representation of the data. We introduce a simple forward probabilistic model which is a multinomial extension of reduced rank regression, and show that this model provides a probabilistic interpretation of discriminative clustering metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016